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Difference Methods on a Digital Computer 
for Laplacian Boundary Value 

and Eigenvalue Problems* 

GEORGE E. FORSYTHE 
University of California, Los Angeles 

1. Finite Difference Approximations 

We begin with 
DEFINITION I. A simple dosed curve F: x(s)+ty{s) (0 ^ s ^ st) is said 

to be piecewise analytic if x{s) and y{s) are real analytic functions of the arc 
length s of T in each of a finite number t of closed intervals 0 = s0 ^ s ^ «! , 

Let the open region R of the x. y-plane have a boundary C which is the 
union of a finite number of piecewise analytic simple closed curves. For real- 
valued functions « = u{x, y) defined on /? u C. denote by Au the Laplacian 
«*•+«» • In numerical computations R, C, u. and Au are frequently replaced 
by coi^esponding quantities associated with a finite difference network. 
These may be introduced as follows (see [I] for a similar treatment): 

For a given mesh constant h>0\et a.net consist of the lines x = fih, 
t/ = W», Ai, v = 0, ±1, ±2, • • •. The points ijih, vh) are called nodes. The 
M nodes which are within R form the net region Rh, assumed to be connect- 
able by line segments of the net within R. A point {ph. vh) of Rh is said to be 
a regular interior point if each of the four neighboring nodes {fth±h. vh±h) 
is in i? u C. All other points of Rh are called irregular interior points. Certain 
points P of Rh have some number p{l^.pS*)oi neighboring nodes P1. 
• • •, P, not in the open region R. For any such point P, let Sk denote the 
closed segment of the net joining PtoPk. For each * = I. •••,/>, the point 
of S» O C closest to P will be called a boundary point of the net. The set of 
boundary points will be denoted by Ch. Some points of Ch may be nodes, but 
each irregular interior point of Rh has one or more neighboring points in Cfc 

which are not nodes. (The definition of Ch given in [2], although intended to 
be the same, is not precise.) 

•The research leading to this paper waa sponsored jointly by the O«^ Naval B*- 
search, project NR-044-144. and the Office of Ordnance Research, project TB2-0O01(121O). 
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For each p^t^   fe^Tw tS*    1" " J"," drfin<!d " foll°ws- 
denoted by (x+*,   y{   li+l'Vl^^ PO"'t8 0' Ä'uC' be 

^ - Ä„/A,  etc.     For  regular  interior points   6- = ft'     ... J,    Tj 
«(.. g = «      «(.-M, . y) = M£ . u{Xi y+h     ='      ^ ~ '•     Let 

Define the residual rP at P by 

where 
-4« /»' 

B = 
1 1 

46^ +4i£6s- Then 

K ' A^u = rP/h*. 

(The definition of JO« in [2] differs by the factor 25.) In case P is a rernHr 
mtenor point. (1) reduces to the usual formula ^^ 

(' rP = uE+uw-\-uN+us—4ul.. 

When there are irregular interior points, the operator J<*. is not .eJf-adioint 

2. Asymptotic Inequalities for All Eigenvalues 

For the operator A. the eigenvalue problem 

(4) Au+Au = 0    in Ä, 
» = 0    on C 

«<'Tn"ct™n.infinite SeqrnCe 0f linear,y indeP^ent eigen functions and corresponding eigenvalues A'*', numbered so that 
(5) 0 < A«1' < A<») ^ A»> ^ • • •. 
Similarly, the eigenvalue problem 

(6) ^A«+AAM = 0   on /?A, 
M = 0   on Cft 

vl:/'^, Xr 0f 'inCarly ind^nde"t ^""-«"ns ,.» and dgan- 

(Recall that M is the number of points of K,.) 
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For rectangles whose sides are lines of the net, it is well known that 

(7) W<,V". k=l.-..,M: 

see also below.   Since for general regions R close lower bounds for the A(*) 

are not easily found, the author has been investigating [3, 5a, 2, 4] whether 
(7) might also hold for other regions. 

Suppose one deals with a polygonal region R which is a finite union of 
squares and half-squares of a net of mesh constant 2h. Then R^ has no ir- 
regular interior points, and neither does Rh, obtained by refining the net. 
At any point {x, y) oi R^, 

(8) A^u = Ahu+lh*Lhu. 

where Lhu = Ä-*{»iro55+«„s5}.   Here 
uxx5x = u{x—2h, y)-4u(x-h, y) + eu(x. y)-4u(x+h. y)+u{x+2h. y), 

and uyvii is defined analogously. Following the idea [3] of putting the fun- 
damental eigenfunction uk = u™ of the problem for Rh into the minimization 
problem for R^ , one finds that 

(») ^ ^ ^ - W (2 u*Lhuh) (2 ul) -\ 
(2*) (2A) 

where 2 denotes a sum over the points of R^ .    Hence whenever 
(2A) 

^uhLkuh > 
(2ft) 

0 

e 
it would then 
A«» -v A»1', as 

(10) 

it follows that 

(11) ^ 

If (11) should hold also for h replaced by A/2, ä/4, Ä/8, • • •, 
follow that A^1' < A(1>, since the methods of [5] show that 
Ä-».0. 

Recent computation with SWAC (see Section 4 below) for the L- 
shaped region of [3] shows that (11) fails for A = 1/16. Hence (10) is not 
true for all polygonal regions of the type considered here. I conjecture, 
however, that (10) holds for any convex R which is the union of squares and 
half-squares of the net. 

Lacking a proof of this conjecture, the author proved [3] an asymptotic 
form of (7) for A = 1, and in [5a] and [2] generalized it to include certain 
regions with curved boundaries (the case k = I oi Theorem 2 below). Thus, 
under the hypotheses of Theorem 2 below, the desired inequality (7) has al- 
ready been proved for the first eigenvalue, though only for sufficiently small 
A. Less delicate inequalities of type A^1' < A'1', valid for all A, have since 
been found by Weinberger [6, 7] and Hersch [8] without such stringent 
hypotheses on R, by allowing Rh to correspond to a region a little larger than 
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R. Assuming x{s), y{s) defining F to be seven times continuously differen- 
tiable, Saul'ev [8a] has recently found inequalities of the type Ui*'—A'*'! = 
0{h2-'), as h -> 0. 

During the 1955 Berkeley Conference for Partial Differential Equations, 
at which this paper was presented, the author completed an extension of the 
results of [2] to all eigenvalues of J and Ah . This has been abstracted in [4], 
and will now be summarized. Let T be the angle between the «-axis and the 
positive direction of the tangent to C. For any function v, let vn denote the 
inner normal derivative of v on C. For any two functions v, w, define an 
inner product (v, w) by the formula 

12(1;, w) = jj{vxxwxx+vttvwvv)dxdy+jvnwnsin22rdT. 
R c 

Let the infinite symmetric matrix D have elements d^ = (u{i>, tiU)), i, j = 
1, 2, • • • , where w(fc> is an eigenfunction of (4) belonging to ttk), normalized 

so that Jf {uW)*dxdy = 1. Corresponding to an m-fold multiple eigenvalue 

oi A, we are to take m linearly independent functions M'*'. 

Define a sequence of real numbers y<*', Ä = 1, 2, • • •, as follows. If 
A**' is a simple eigenvalue of (4), take y'4' = dkk . If A'*' = A(*+1) ==.■• = 
frk+m-i) js an „j.fojd multiple eigenvalue of (4), then define y{k) ^ y(fc+i) ^ 
. . . ^ y(fc+m-i) t0 5e the m (real) eigenvalues of {d{i), i,j = k,---, k+m—1, 
the corresponding w-rowed principal minor of D. 

DEFINITION 2. A region R bounded by a finite number of piecewise 
analytic curves is said to have strictly convex corners if, at any point x{sj)-\- 
iyisj) where distinct analytic curves meet {see Definition I), the interior angle is 
less than n {equality not permitted). 

THEOREM 1, Let R, an open region with strictly convex corners, be bounded 
by C, the union of a finite number of piecewise analytic, simple closed curves. 
Define h, X{k) , X^, y{k) as above. Then for k = 1, 2, • • • one has — oo < y<*' < 
oo and, as Ä ->■ 0, 

(12) /Ij*' ^ ;i(*>-y<*>Äi-)-o(Ä«). 

A proof of Theorem 1 will appear in a later paper. If R is also convex, 
then C is a simple closed curve with dr ^ 0, and D is therefore a Gramian 
matrix. Hence all y'*' > 0, and we have the following corollary to 
Theorem 1: 

THEOREM 2. Let R, a convex open region with strictly convex corners, be 
bounded by C, a piecewise analytic, simple closed curve. Then, with the above 
notation, 0 < y<*> < oo, and for each k = 1, 2, • • • there exists h0{k) > 0 such 
that ttk) < A<*' if h^h0{k). 

A 
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The case k = 1 of Theorems 1 and 2 is the result proved in [2]. (In 
Theorem 1 of [2] the assumption that R be simply connected was never 
used.   Note: The proof of Lemma 1 in [2] is incorrect.) 

As an asymptotic result Theorem 1 is the best possible, in the following 
sense. For a rectangle R of sides n/p, n/q. the relation (12) is actually an 
equality for all k. up to the term o(Ä«). For, corresponding to the eigenfunc- 
tion «(•».«) = sin mpx sin nqy of both (4) and (6) (it is convenient here to 
use a double superscript m, n instead of the single superscript k), one has 

;(m.») = {mp)*+{nq)*; 
and, as A -> 0 over values of h for which i? is a union of squares of the net. 

W-"' = sin2 {mph/2) + sin2 (nqh/2) 

(13) 
_ ^(m.n) 

(A/2)2 

 A2+o(A2) 

= A"»-'" — («(-»."), «<m-»))Ai!/12+o(A2). 

Since   K»."), „(".')) = 0   unless   l^-^H-l«^ = Q,   one   has   *<-.•)- 
«(-..-), M("..»))/i2( even for multiple eigenvalues.   Hence (13) shows that 

(12) is an equality for the rectangle R, up to the term o(A8). 

3. Solving the Difference Equations on a Machine 

Let us first consider solving the Dtrichlet difference problem 

(14a) /l«*'« = 0        on Rh, 

^14b^ « = prescribed function on Ch 

on an automatic digital computer. Assume there arc no irregular interior 
points of R,, so that  (14a) is equivalent to 

(14c) rP = tiE+uN+uw+us-4uP = 0       on Rh. 

To solve the system of M equations (14c) in the unknown values of u at the 

^ToH K *' Tf™ meth0dS are ^^y Preferable to elimination 
S nm r^ t^/^Plicity. The successive overrelazation process 
of [10] and [9] has proved very successful. In it the points of /?. are re- 
peatedly scanned in a cyclic order. In its turn, at each point P of Rh the 
value uP is immediately replaced by a new value u'P, 

where ß (1 £ ß < 2) is & parameter to be discussed below. Using the new 
value of uP , one goes on to the next point of Rh , and so on. For /? = 1 this 

r 
/ 
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is the Liebmann process [11], in which u'p = i{uE-\-uN+uw+us). Any 
reasonable initial va'ues uj}"* of the function u over Rh will suffice, and one 
may take all M^

0
* = 0. 

Let ujf* be the result of k sweeps through i?A with successive overrelaxa- 
tion. Let «<(,0, be the exact solution of (14); define the error ef* = «i*1—«<*>. 
Since the solution process is linear, one knows that 

»4 — ß P ' 
where Hp is a certain linear transformation of Rh into itself. The conver- 
gence of e1^ toO.as k-*- oo, depends on the maximum modulus of the eigen- 
values ^(Hß) of Hß . For the Dirichlet problem it is known [9] that ^{H^l 
< 1 (all i,0 < ß < 2), so that successive overrelaxation (1 ^ /? < 2) alwajrs 
converges. The ultimate speed of convergence depends on max^ ^(Z^)!. 
Now, for any single step (15), to choose /5 = 1 is the best tactic, in the sense 
that the negative definite error function £* eA(h)e is brought as close to the 
desired value 0 as is possible in the one step, by choosing ß = 1 in (15). 
However, hand computers have long observed [12] that certain choices 
^5 > 1 apparently represent a better strategy than ß = 1, in the sense that 
^*> -*■ 0 faster asymptotically, as A ->■ oo. (Related ideas of strategy and 
tactics for other linear processes will be found in [13].) In [10] and [9] the 
matter of a best strategy is settled by showing how to pick the unique ß0 

for which max, jAj^)] is minimized.   Indeed, 

(16) /?,»*. 
1 + Vl—<r 

where 

(17) <r = maxjA4(Ä1)|. 

The number a is easily approximated by setting ß = I and estimating the 
asymptotic value of ||<^+1,||/||«iW||. as *-»■ oo, where ||-|| denotes some con- 
venient norm function. When ß = ß0 . all the (^(J^)!, » = 1, • • • , Af, turn 
out to be equal, so that the manner of approach of ||^w|| to 0 is utterly un- 
predictable. 

When R has a curvilinear boundary C, the theory of [9] still holds, and 
the successive overrelaxation method is just as attractive. One simply re- 
places the formula (3) for rp at irregular interior points P of Rh by the for- 
mula (1). 

For the eigenvalue problem (6) successive overrelaxation is readily 
adaptable to getting Aj" and its associated eigenvector u1^ . One uses a trial 
value A for XJP, and solves the system 

(18) (JA+A/)M = 0    on Rh. 

u = 0    on CÄ 

i 

•r 
• *» 
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by successive overrelaxation starting with some nonzero vector «'0' . For the 
residual, assuming that Rh has only regular interior points (so that A = 
J'*'), one uses 

in (15). If A were exactly equal to X™ , the iterates «J« would stav roughly 
in the affme subspace 5 (of M-dimensional space) which is orthogonal to 
«i» and passes through «f . Apart from an exceptional set of «f of zero 
measure, one would always have u™ -> a«'1' . as yfe -> oo. where « is some 
nonzero number depending on ««» . If A is near A»» but not equal to it, one 
finds that «w moves asymptotically into the line a«],1' while converging to 
0 or oo. An improved value of A is then obtainable from the Rayleitrh quo- 
tient eA«>). where y    *>   H 

R» *» 
One then uses the better A in (19), and alternates a few steps of succes- 

sive overrelaxation with the Rayleigh quotient calculation, until a satis- 
factory a«;1' is obtained. 

For getting A*' and <« (* > I), the idea of solving (18) with A near 
AA is undoubtedly still a good one, but successive overrelaxation no longer 
converges, because JA+A<*'/is not semidefinite for ^ > 1. A simple iteration 
which can solve indefinite systems must be substituted-perhaps that of 
Kaczmarz [14]. 

4. SWAC Codes 

SWAC is an electronic digital computer built by the National Bureau of 
Standards, but now owned by the Department of Defense and loaned to the 
University of California, Los Angeles, for research in numerical analysis. 
It is a three or four address machine with a Williams tube memory of 256 
words; each word consists of 36 binary digits and a sign. Add time is 
.000064 second; multiplication time is slightly less than six add times. An 
auxiliary magnetic drum memory holds 4096 words in 128 channels of 32 
words each (increased to 8192 words in late 1955). One can transfer a block 
of up to 32 words between the drum and the Williams tube memory in 
.017 second. For substantial problems, computing time is measured in 
hours, while coding time is measured in weeks. 

In connection with the author's graduate seminar on numerical methods 
for elliptic partial differential equations, held in the spring of 1955. a few 
general codes were prepared following the methods of Section 3 above. 

In all these codes the net region Rh is represented by a subset of the 

/ 

; 

'C » 
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32 by 128 rectangular array of cells on SWAC's magnetic drum. Parameters 
indicate the smallest rectangle in which #„ is contained. In all the codes the 
data in successive drum channels are brought to the Williams tube memory 
for the relaxation process, and the improved values are sent back when they 
are no longer needed. 

The author's basic Code 60 solves Dirichlet's problem for the operator 
zd«*' = JA for a region with no irregular interior points. Here Ch consists 
solely of nodes of the net, and can thus also be represented by cells of the 
drum. Points of Rh have a 0 in the most significant binary digit. Points not 
in Rh are tagged with a 1 in the same digit, and can be an arbitrary subset of 
the 32 by 128 rectangular array. Code 60 assumes that the values of u have 
been placed in the drum cells representing Ch , in digits less significant than 
the first (which is assumed to be tagged with a 1, as stated above). It per- 
forms successive overrelaxation at all points of jf?Ä, leaving all other values of 
u unchanged. The overrelaxation factor ß defined in Section 3 can be modi- 
fied at will by the SWAC operator. (It is fun for the operator to participate 
in the solution. Having the operator manage ß, while SWAC manages all 
other members, seems a satisfactory division of labor!) The error measure 
used, denoted by H^*'!], is the first power norm of r«*>; it is displayed at the 
end of each sweep through Rh . It is easily accumulated during the algorithm 
(15). since 

ii«rii=5>n 
The ratio 114*'11 /11^*-1'11 is also displayed, and is useful, for example, 

in approximating the a of  (17). 
When Rh is a rectangle of 30 by 68 interior points, a relaxation sweep 

through the 2040 points takes SWAC 8.5 seconds. When ß= 1. to reduce 
e[k) by a factor of lO"6 would take about 2300 sweeps—over five hours on 
SWAC. Using the optimal value ß = ß0 = 1.8684-, only 90 sweeps would be 
needed—about 13 minutes on SWAC. Including the time necessary to 
estimate that 1.875 is a pretty good value for ß, and running with this ß, a 
reduction of 10-6in e^ is foundin practice to take 20or 30minutes (see [15]). 

Code 61 is a modification of Code 60 in which boundary conditions cor- 
responding to du/dn = «„ = 0 are permitted at any point of CA . Suppose, 
for example, that it is desired to have du/dx = 0 for a; = 0, where R is z 
region with x > 0. Then values of u{x, y) for the lines x = —h, x = 0, 
x = h, x --= 2h, • • • are all stored on the drum for appropriate values of y. 
When the code comes tou(—h.y) for any y, the value is simply replaced by 
u{h, y). The values «(0, y), u{h, y), u{2h, y), • • • are all relaxed according to 
(15). Again the relaxation routine is notified of the different types of interior 
and boundary points by suitable identification digits. 
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Mr. Kenneth Ralston of U.C.L.A. has prepared a SWAC code analogous 
to Code 60, dealing with curvilinear boundaries. Note in this case that it is 
no longer possible to map Ch onto the drum in a simple manner. For example, 
the point of Ch "north" of the point (//A, vh) of Rh may not be the same as the 
point of Ch "west" of {fih+h,vh+h). Identification digits distinguish: 
(a) points not in Rh , to be left alone, (b) regular interior points, to be treated 
by (15), with rP as in (3), and (c) irregular interior points, to be treated by 
(15), with tp as in (1). 

To deal with irregular interior points Ralston stores the coefficients of 
«£ . «jv . »N • us m formula (1) in four cells of certain special channels of the 
drum. Since one meets the irregular interior points of Rh in a fixed order, all 
these special coefficients can be stored once and for all in the proper sequence. 
(Such of the uE , uw, uN , «s as are fixed boundary values are actually 
multiplied into the coefficients stored in the special channeL.) Ralston can 
also use the special channels to simulate a general mixed boundary condition 
aun+bu+c == 0 on a straight boundary segment parallel to the a; or y axis. 

The author's Code 70 performs successive overrelaxation for the eigen- 
value problem (6) over regions with no irregular interior points, following 
the method described in Section 3. The quantities ß and 4—k are both 
parameters of the code. Auxiliary to Code 70 are three other codes: Code 80 
doubles the values of u over Rh, while Code 82 halves these values of u. 
Code 81 forms the Rayleigh quotient (20). 

With Codes 70—82 the author found the fundamental eigenvalue for 
the L-shaped region of [3] for various h, and found the counter-example 
mentioned after (11). Code 61 has been adapted for some soil engineering 
calculations by Mr. D. Isherwood and Mrs. Louise Straus of U.C.L.A. Code 
60 has been modified by Miss Rita Powers at U.C.L.A. to study the influeni.e 
of the order in which the points of Rh are relaxed on the rate of convergence 
of successive overrelaxation. 

To make Ralston's code more available for problems, a code is badly 
needed to tag the drum cells with the identification digits, to precomputc the 
coefficients (1), and to store the latter on the special channels. Ralston and 
the author have outlined such a code, assuming C to be a piecewi.se quadratic 
function of x, y.   Another needed code is one to get A^*1, for A > 1. 

Using the ORACLE computer at Oak Ridge National Laboratories, 
W. C. Sangren [unpublished] has also computed X™ for the L-shaped region 
of [3] and for other simple regions with rectilinear boundaries. 
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